Section 10.1

Parametric FRQ Example

Chapter 10 AP Packet \#12 (1973 BC4)

A kite flies according to the parametric equations $x=\frac{t}{8}$ and $y=-\frac{3}{64} t(t-128)$ where t is measured in seconds and $0 \leq t \leq 90$.
a. How high is the kite above the ground at $t=32$ seconds?

$$
\begin{aligned}
y(32) & =-\frac{3}{26} \cdot 32(32-128) \\
& =-\frac{3}{2}(-96) \\
& =3(48) \\
& =1.44)
\end{aligned}
$$

Chapter 10 AP Packet \#12 (1973 BC4)

A kite flies according to the parametric equations $x=\frac{t}{8}$ and $y=-\frac{3}{64} t(t-128)$ where t is measured in seconds and $0 \leq t \leq 90$.
b. At what rate is the kite rising at $t=32$ seconds?

$$
\begin{aligned}
& y=-\frac{3}{64}\left(t^{2}-128 t\right) \\
& \frac{d y}{d t}=-\frac{3}{64}(2 t-128) \\
& \left.\frac{d y}{d t}\right|_{t=32}=-\frac{3}{64}(64-12 f)=3
\end{aligned}
$$

Chapter 10 AP Packet \#12 (1973 BC4)
A kite flies according to the parametric equations $x=\frac{t}{8}$ and $y=-\frac{3}{64} t(t-128)$ where t is measured in seconds and $0 \leq t \leq 90$.
c. At what rate is the string being reeled out at $t=32$ seconds?

$$
x(32)=4 \quad x^{\prime}(3)=\frac{1}{8}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=z^{2} \\
& x \times \frac{d x}{d t}+x y \frac{d y}{d t}=x z \frac{d z}{d t} \\
& \frac{4\left(\frac{1}{8}\right)+144(3)}{\sqrt{4^{2}+144^{2}}}=\sqrt{y^{2}+144^{2}}\left(\frac{d z}{d t}\right.
\end{aligned}
$$

$$
y(32)=144 \quad y^{\prime}(32)=3
$$

Chapter 10 AP Packet \#12 (1973 BC4)
A kite flies according to the parametric equations $x=\frac{t}{8}$ and $y=-\frac{3}{64} t(t-128)$ where t is measured in seconds and $0 \leq t \leq 90$.
d. At what time does the kite start to lose altitude?

$$
\begin{gathered}
y^{\prime}(t)=-\frac{3}{64}(2 t-128)=0 \\
t=64 \\
y_{0}^{\prime} \frac{t+}{64} \frac{1}{6} \quad
\end{gathered}
$$

since y cumber farm + to-
AT $t=64$, KITE STARTS LOSING MTTIDE AT $t=64$.

Classwork:

AP Packet \#14, 16

Homework:

AP Packet \#1-17

