Section 10.1

Parametric FRQ Example

A kite flies according to the parametric equations $x = \frac{t}{8}$ and $y = -\frac{3}{64}t(t-128)$ where t is measured in seconds and $0 \le t \le 90$.

a. How high is the kite above the ground at t = 32 seconds?

$$y(32) = -\frac{3}{2} \cdot 32(32 - 128)$$

$$= -\frac{3}{2}(-96)$$

$$= 3(48)$$

$$= (444)$$

A kite flies according to the parametric equations $x = \frac{t}{8}$ and $y = -\frac{3}{64}t(t-128)$ where t is measured in seconds and $0 \le t \le 90$.

b. At what rate is the kite rising at t = 32 seconds?

$$\frac{dH}{dt} = \frac{64}{3}(64-158)$$

$$\frac{dH}{dt} = \frac{64}{3}(54-158)$$

$$\frac{dH}{dt} = \frac{64}{3}(54-158)$$

A kite flies according to the parametric equations $x = \frac{t}{8}$ and $y = -\frac{3}{64}t(t-128)$ where t is measured in seconds and $0 \le t \le 90$.

c. At what rate is the string being reeled out at t = 32 seconds?

$$\chi(32) = 4 \quad \chi'(32) = \frac{1}{8}$$

 $\chi(32) = 144 \quad \chi'(32) = 3$

A kite flies according to the parametric equations $x = \frac{t}{8}$ and $y = -\frac{3}{64}t(t-128)$ where t is measured in seconds and $0 \le t \le 90$.

d. At what time does the kite start to lose altitude?

$$y'(t) = -\frac{2}{64}(2t-128) = 0$$

$$t = 64$$

$$y''(t) = -\frac{2}{64}(2t-128) = 0$$

Classwork:

AP Packet #14, 16

Homework:

AP Packet #1-17